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Abstract
Classical mechanics is formulated in complex Hilbert space with the
introduction of a commutative product of operators, an antisymmetric bracket
and a quasidensity operator that is not positive definite. These are analogues
of the star product, the Moyal bracket, and the Wigner function in the phase
space formulation of quantum mechanics. Quantum mechanics is then viewed
as a limiting form of classical mechanics, as Planck’s constant approaches zero,
rather than the other way around. The forms of semiquantum approximations
to classical mechanics, analogous to semiclassical approximations to quantum
mechanics, are indicated.

PACS numbers: 03.65.−w, 45.20.−d, 03.65.Sq, 03.65.Ta

While our understanding of the relation between quantum mechanics and classical mechanics
has steadily increased over the past 75 years, as a result of many studies from various points
of view (see [1–7] and references therein), few would claim that it is complete. Meanwhile,
increasing attention has focused on the interface between the quantum and classical domains,
because of advances in experimental science and engineering, and the associated development
of ‘nanotechnology’.

Classical mechanics is usually formulated in real, finite-dimensional phase space, and
quantum mechanics is usually formulated in complex, infinite-dimensional Hilbert space.
However, a completely equivalent formulation of quantum mechanics in phase space is
known [8–15], with a quasidistribution function that is not positive definite, in terms of
which quantum mechanics is seen as a deformation of classical mechanics [14]. The phase
space formulation of quantum mechanics provides a natural setting for the formulation of
semiclassical approximations to quantum mechanics [1, 4, 10], which allow us to explore the
interface between the two forms of mechanics when approached from the classical side.
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In his remarkable paper in 1946, Groenewold [11] indicated the alternative possibility of
formulating classical mechanics as a quantum-like theory, with a quasidensity operator that is
not positive definite, although few details were given. This idea has since been commented
upon [14] and explored [16], notably by Muga et al [17]. It is not to be confused with the
approach to classical mechanics in the real Hilbert space of square-integrable phase space
functions [18]. Here we show that just as quantum mechanics can be formulated in phase
space, so also classical mechanics can be formulated in complex Hilbert space, in such a
way that quantum mechanics is seen as a limiting form of classical mechanics, emerging
as Planck’s constant approaches zero, rather than the other way around. And now there arises
the possibility of exploring the interface between quantum mechanics and classical mechanics
from the other side, the quantum side, with the development of semiquantum approximations
to classical mechanics.

We limit our discussion to a system with one linear degree of freedom. All formulae below
can be generalized to many (possibly infinitely many!) degrees of freedom. Our presentation
is formal and heuristic; there is no attempt at mathematical rigour.

A conservative classical system is usually described in terms of functions (classical
observables) AC(q, p) on phase space, together with a probability density ρC(q, p, t),
characterizing the state of the system at time t, with evolution equation

∂ρC

∂t
= {HC, ρC}P ≡ HCJρC

J = ∂L

∂q

∂R

∂p
− ∂L

∂p

∂R

∂q
.

(1)

HereHC is the Hamiltonian function, {A,B}P denotes the Poisson bracket, and the superscripts
L and R indicate the directions in which the differential operators act. The expectation value
of the classical observableAC(q, p) at time t is

〈AC〉(t) =
∫
AC(q, p)ρC(q, p, t) dq dp. (2)

In (2) and below, integrals are over all real values of the variables of integration.
A conservative quantum system is usually described in terms of a complex Hilbert space

of square-integrable state functionsψ(x). Quantum observables are linear operators ÂQ acting
on state functions as

(ÂQψ)(x) =
∫
AQK(x, y)ψ(y) dy (3)

where AQK(x, y) is a complex-valued function, the kernel of ÂQ. In particular, the canonical
coordinate and momentum operators q̂ and p̂ have kernels xδ(x − y) and −ih̄δ′(x − y),
respectively, where δ(x) is Dirac’s ‘delta function’. If the observable quantity is real, the
corresponding operator is Hermitian: AQK(x, y) = AQK(y, x)

∗. An important example is
the quantum density operator ρ̂Q(t), which has a kernel

ρQK(x, y, t) =
∑
r

prψr(x, t)ψr(y, t)
∗ (4)

when the system is in a state described by the ‘mixture’ of orthogonal and normalized state
functions ψr(x, t) with associated probabilities pr at time t. The quantum density operator is
positive definite, with unit trace, and the expectation value of the quantum observable ÂQ at
time t is

〈ÂQ〉(t) = Tr(ÂQρ̂Q(t)). (5)
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The evolution equation for ρ̂Q(t) is

∂ρ̂Q

∂t
= 1

ih̄
[ĤQ, ρ̂Q] (6)

where ĤQ is the Hamiltonian operator, and [ÂQ, B̂Q] denotes the commutator.
In order to map the Hilbert space formulation of quantum mechanics into the phase space

formulation, the Weyl–Wigner transform W is introduced. For each quantum observable ÂQ
with kernel AQK(x, y), a corresponding functionAQ = W(ÂQ) on phase space is defined by
setting

AQ(q, p) =
∫
AQK(q − x/2, q + x/2) eipx/h̄ dx. (7)

If ÂQ is Hermitian, then AQ is real. The Wigner density function ρQ(t) = W(ρ̂Q(t))/(2πh̄)
is a particular case, in terms of which the quantum expectation value (5) can be rewritten as

〈ÂQ〉(t) =
∫
�

AQ(q, p)ρQ(q, p, t) dq dp. (8)

This has the appearance of the classical average (2), but while the Wigner function is real and
normalized, it is not in general non-negative everywhere on phase space, and consequently
can be interpreted only as a quasiprobability density.

In order to describe dynamics in the phase space formulation, the celebrated star product
and star (or Moyal) bracket of quantum phase space functions are introduced [9, 11, 12]:

(AQ � BQ) = W(ÂQB̂Q)

{AQ,BQ}� = 1

ih̄
W([ÂQ, B̂Q])

= 1

ih̄
(AQ � BQ − BQ � AQ). (9)

Then q � p = qp + ih̄/2, p � q = qp − ih̄/2, q2 � p3 = q2p3 + 3ih̄qp2 − 3h̄2p, etc. The
quantum evolution (6) is now replaced by

∂ρQ(t)

∂t
= {HQ, ρQ}� (10)

whereHQ = W(ĤQ).
For suitably smooth AQ and BQ, in particular polynomials in q and p, it can be shown

from (9) that

{AQ,BQ}� = AQGBQ G = 2

h̄
sin

[
h̄

2
J

]
(11)

where the sine function is to be interpreted by its Taylor series, and J is as in (1). For more
general AQ,BQ, such an expansion has only an asymptotic meaning, so that (10) leads to

∂ρQ(t)

∂t
∼ HQJρQ − h̄2

3!22
HQJ

3ρQ +
h̄4

5!24
HQJ

5ρQ · · · (h̄ → 0). (12)

Equations (8) and (12) are to be compared with their classical counterparts (2) and (1),
which are ‘obtained’ from (8) and (12) as h̄ approaches 0. It is not our purpose here to discuss
the subtle mathematical difficulties associated with this limiting process [1, 4]. It suffices to
say that (8) and (12) form a natural starting point for discussions of the classical limit, and of
semiclassical approximations to quantum mechanics [4] as h̄ approaches 0.

We now stand the foregoing phase space reformulation of quantum mechanics on its head,
and instead reformulate classical mechanics in Hilbert space. With each classical phase space
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function AC(q, p), we associate a linear operator ÂC = W−1(AC). This defines ÂC as the
operator with kernel

ACK(x, y) = 1

2πh̄

∫
AC([x + y]/2, p) eip(x−y)/h̄ dp. (13)

If AC is real, then ÂC is Hermitian. This is the usual Weyl mapping [8] from functions to
operators, but our intention here is not to quantize, but to reformulate classical mechanics in
Hilbert space. It may then be objected that Planck’s constant is not available to us in a classical
theory. We treat h̄ for the moment as a parameter with dimensions of action, whose value is
to be specified at our convenience.

As a special case, we have the Groenewold density operator [11]

ρ̂C(t) = 2πh̄W−1(ρC(q, p, t)). (14)

This can be seen to be bounded, with unit trace, but unlike a true quantum density operator, it is
not always positive definite. Just as the Wigner function ρQ(q, p, t) is only a quasiprobability
density, so also the Groenewold operator ρ̂C(t) is only a quasidensity operator [11]. But just
as quantum averages can be calculated using the Wigner function in the ‘classical’ formula
(8), so also classical averages can be calculated using ρ̂C(t) in the ‘quantum’ formula

〈AC〉(t) = Tr(ÂCρ̂C(t)) (15)

where ÂC is the operator corresponding to the classical function AC(q, p).
In order to describe classical dynamics in Hilbert space, we first introduce a distributive,

associative and commutative ‘odot’ product of operators,

ÂC � B̂C = W−1(ACBC) = B̂C � ÂC. (16)

Then for example, q̂ � p̂ = p̂ � q̂ = (q̂p̂ + p̂q̂)/2, q̂2 � p̂3 = p̂3 � q̂2 = (q̂2p̂3 + 2q̂p̂3q̂ +
p̂3q̂2)/4, etc. More generally, {q̂kp̂l} � {q̂mp̂n} = {q̂k+mp̂l+n}, where {q̂r p̂s} denotes the
Weyl-ordered operator [8, 13] corresponding to the classical monomial qrps . This follows
from (16) because {q̂r p̂s} = W−1(qrps).

Most generally, it can be seen from (13) that the kernels of the operators ÂC , B̂C and
ÂC � B̂C are related by

(ÂC � B̂C)K(x, y) = (B̂C � ÂC)K(x, y) =
∫
ACK([3x + y − 2u]/4, [x + 3y + 2u]/4)

×BCK([3x + y + 2u]/4, [x + 3y − 2u]/4) du. (17)

It is helpful to introduce the notation

Aq = ∂A/∂q Aqp = ∂2A/∂q∂p, . . .
(18)

Âq = 1

ih̄
[Â, p̂] Âqp =

(
1

ih̄

)2

[q̂, [Â, p̂]], . . .

and to note that, because Aqp = qG(AGp), etc., and

W−1(AGB) = 1

ih̄
[Â, B̂] (19)

we have W−1(Aqp) = Âqp, etc. In (18), q̂ and p̂ are the usual canonical operators, except
with commutator involving the parameter h̄, whose value has not yet been fixed.

To describe classical dynamics, we need to introduce a new bracket, equal except for
a convenient factor to the image of the Poisson bracket under the inverse Weyl–Wigner
transform. We set

[ÂC, B̂C]� = ih̄W−1({AC,BC}P )
= ih̄

(
ÂCq � B̂Cp − ÂCp � B̂Cq

)
. (20)
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Now the classical evolution equation (1) is replaced by
∂ρ̂C

∂t
= 1

ih̄
[ĤC, ρ̂C]�. (21)

We emphasize that this formulation of classical mechanics in terms of linear operators on
complex Hilbert space, incorporating the arbitrary parameter h̄, and with key equations (15)
and (21), is entirely equivalent to the usual phase space formulation. We can switch between
corresponding points in the two descriptions with the help of the Weyl–Wigner transform W
and its inverse W−1.

Next, we expand the odot bracket, corresponding to the expansion (11). Noting that

θ = sin θ(1 + θ2/6 + 7θ4/360 − · · ·) |θ | < π (22)

we write

AJB = AGB +
1

6

(
h̄

2

)2

AJ 2GB +
7

360

(
h̄

2

)4

AJ 4GB − · · ·

= AGB +
1

6

(
h̄

2

)2

(AqqGBpp − 2AqpGBqp +AppGBqq) + · · · (23)

and then, applying W−1 to both sides,

[Â, B̂]� = [Â, B̂] +
1

6

(
h̄

2

)2

([Âqq , B̂pp] − 2[Âqp, B̂qp] + [Âpp, B̂qq ]) + · · · . (24)

The series (23) and (24) terminate if at least one of A and B is a polynomial in q and p.
For more general A and B, we may expect that the series have well-defined meanings as
asymptotic expansions when h̄ → 0.

The classical evolution (1) then takes the form
∂ρ̂C

∂t
∼ 1

ih̄
[ĤC, ρ̂C] − ih̄

24
([ĤCqq , ρ̂Cpp] − 2[ĤCqp, ρ̂Cqp]

+ [ĤCpp, ρ̂Cqq ])− · · · (h̄ → 0). (25)

IfHC is a polynomial in q and p, then this series terminates and the asymptotic result becomes
exact.

If HC = H(q, p) = p2/(2m) + V (q), then (25) reduces to
∂ρ̂C

∂t
∼ 1

ih̄
[H(q̂, p̂), ρ̂C] − ih̄

24
[V ′′(q̂), ρ̂Cpp]

− 7ih̄3

5760
[V (iv)(q̂), ρ̂Cpppp] + · · · (h̄ → 0) (26)

which is an analogue of Wigner’s equation for the evolution of his density function [10].
If we now identify h̄ with Planck’s constant, we see that equations (5) and (6) of quantum

mechanics emerge formally from (15) and (25) as h̄ approaches 0, so that in this sense quantum
mechanics can be regarded as a limiting form of classical mechanics. Most interesting is that
(15) and (25) may be expected to form a suitable starting point for semiquantum approximations
to classical mechanics, analogous to semiclassical approximations to quantum mechanics.

These results may seem paradoxical. We have introduced h̄ into a reformulation of
classical mechanics, without affecting its predictions in any way, and see that as this parameter
approaches 0, the equations of quantum mechanics emerge. Usually we say, speaking loosely,
that classical mechanics is obtained from quantum mechanics as h̄ approaches 0. Viewing
things from the perspective provided by the above results, we argue that it is more appropriate
to say that classical mechanics and quantum mechanics become asymptotically equivalent as
h̄ approaches 0: the interface can be approached from either side.
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We conclude with a few remarks about interesting issues suggested by the preceding
discussion.

(1) In quantum mechanics, the fundamental importance of the spectra of self-adjoint
operators, the superposability of state functions and the nonunitary change in the density
operator following a measurement is obscured in the phase space formulation. They
underlie the determination of averages (8) and of initial values of Wigner functions. On
the other hand, the Hilbert space formulation of classical mechanics raises the question:
what is the relevance of operator spectra and the superposability of complex vectors to
classical mechanics, when formulated in this way?

(2) Consider a normalized classical density at some fixed time given by

ρC(q, p) =
√
αβ

π
e−(αq2+βp2). (27)

The corresponding quasidensity operator ρ̂C has kernel

ρCK(x, y) =
√
α

π
e−α(x+y)2/4 e−(x−y)2/(4βh̄2). (28)

It is easy to check that this operator is bounded, with unit trace, but it is not in general
positive definite. If αβ = 1/(h̄)2, so that the product of the uncertainties of q and p is
equal to h̄/2, the kernel factorizes:

ρCK = ψ(x)ψ(y)∗ ψ(x) = 4

√
α

π
e−αx2/2 (29)

and the operator has the form of a true, positive-definite density operator, corresponding to
the pure coherent stateψ(x). More generally, a little thought shows that the only positive-
definite quasidensity operators are those corresponding to convex linear combinations
of Gaussian ρC(q, p), each with the product of the uncertainties in q and p equal to
h̄/2. At the other extreme, as α → ∞ and β → ∞, then ρC(q, p) → δ(q)δ(p) and
ρCK(x, y) → 2δ(x + y). This defines the starting point of a classical trajectory, as
described in the Hilbert space formulation.

(3) Consider a classical system exhibiting chaos [3], for example the Henon–Heiles oscillator
with two degrees of freedom and Hamiltonian

HC = H(q1, q2, p1, p2)

= a
(
p1

2 + p2
2
)

+ b
(
q1

2 + q2
2
)

+ cq1
(
3q2

2 − q1
2
)
. (30)

This system is described in Hilbert space by (15) and (the obvious generalization of) (26),
with the series terminating after the terms of order h̄. If we choose a Gaussian initial
density, generalizing (27), with arbitrarily small uncertainties in the dynamical variables
then, with the help of a computer, we can in principle track the average evolution of
the classical system, again with arbitrarily small uncertainties, and even if the motion is
chaotic, while working in the Hilbert space formalism. This is remarkable because in the
leading ‘quantum approximation’, obtained by neglecting the terms of order h̄ in (26), the
classical chaos is suppressed [1, 3].

(4) The new bracket has the ‘odot derivation property’ and ‘odot Jacobi identity’, which it
inherits from the Poisson bracket:

[Â, B̂ � Ĉ]� = Ĉ � [Â, B̂]� + B̂ � [Â, Ĉ]�
[[Â, B̂]�, Ĉ]� + [[B̂, Ĉ]�, Â]� + [[Ĉ, Â]�, B̂]� = 0. (31)

Poisson algebras of phase space functions, and associated groups, should translate into
interesting odot operator structures in Hilbert space.
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